Teoria degli Insiemi. Problemi
LEGGI ANCHE: Esercizi sugli Insiemi – Soluzioni
Fonte: Matematicamente
Problema 1
Una classe deve svolgere un compito in classe composto da 3 problemi. Il primo problema è risolto da 18 alunni; il secondo problema è risolto da 17 alunni e il terzo problema da 16.
Inoltre 5 studenti hanno risolto sia il primo che il secondo, ma non il terzo. Due hanno risolto il primo e il terzo, ma non il secondo e uno ha risolto tutti i problemi.
Sapendo che tutti hanno risolto almeno un problema, quanti sono gli studenti?
Problema 2
Individua i seguenti insiemi:
- A U B
- B ∩ C
- (A U B) U (B ∩ C)
- (A\B)
- (B\A)
- (A\B) U (B\A)
- (AUBUC)
Problema 3
Sia A l’insieme dei numeri naturali multipli di 5 e minori di 30; B l’insieme dei numeri naturali multipli di 8 e minori di 40 e C, l’insieme dei numeri naturali che sono divisori di 18, determina:
- A ∩ B,
- A ∩ C,
- B ∩ C,
- A U B
- B \ A
Stabilire la cardinalità = Contare quanti sono
Problema 4
Stabilire le cardinalità dei seguenti insiemi:
A = { x I x ∈ N, x è dispari e x < 20 }
B = { x I x ∈ N, x è pari e x < 10 }
C = { x I x ∈ N, x è pari e x≤ 10 }
Problema 5
Stabilire se A = { x I x ∈ N, x è pari multiplo di 3 } è un sottoinsieme di B = { x I x ∈ N, x è multiplo di 12 }
Problema 6
Calcolare l’insieme delle parti di A = { 2,3,6 } e stabilire, senza determinarlo, le cardinalità dell’insieme della parti di B = { 1,2,3,4,5,6,7,8,9,10 }.
Fonte: Daniele Baldissin
Problema 7
Ad una festa di compleanno partecipano 20 persone. Di queste 9 bevono vino bianco, 10 rosso e 3 sia bianco che rosso. Visualizza la situazione descritta e calcola quante persone non hanno bevuto ne bianco ne rosso.
Problema 8
In una scuola frequentano 200 alunni, la maggior parte di essi ha trascorso le vacanze al mare e in montagna. In particolare si ha che:
- 115 hanno trascorso le vacanze al mare
- 35 hanno trascorso le vacanze sia al mare che in montagna
- 25 non ha fatto alcuna vacanza
Quanti sono gli alunni che hanno trascorso le vacanze solo in montagna?
Problema 9
Una scuola organizza due corsi di recupero: quello di inglese a cui partecipano 30 studenti e quello di matematica a cui partecipano 36 studenti. Quanti alunni in totale partecipano sapendo che i corsi si tengono in orari diversi e che 16 alunni frequentano entrambi i corsi?
Problema 10
Da un’indagine condotta in una classe di 25 alunni sul tipo di sport che preferiscono fare i ragazzi, risulta che 12 hanno scelto il calcio, 11 la pallacanestro e 8 la pallavolo.
Si sà inoltre che 2 amano le 3 discipline, 3 solo il calcio e la pallacanestro, 2 solo la pallacanestro e la pallavolo.
Calcola gli alunni che preferiscono pallavolo e calcio.
Problema 11
Una indagine condotta su 26 alunni ha stabilito che la mattina tutti i ragazzi fanno colazione e che 15 di loro bevono latte, 6 latte e caffè e 8 solo thè. Domanda, quanti bevono solo caffè?